Effect of addition of Nano hydroxyapatite particles on wear of resin modified glass ionomer by tooth brushing simulation

نویسندگان

  • Kiana Poorzandpoush
  • Ladan-Ranjbar Omrani
  • Shiva H. Jafarnia
  • Parisa Golkar
  • Mohammad Atai
چکیده

BACKGROUND Recently, incorporation of nanohydroxyapatite (NHA) has been suggested to improve the mechanical properties of glass ionomers (GIs). This study aimed to assess the effect of addition of NHA on wear of resin modified glass ionomer (RMGI) by tooth brushing simulation. MATERIAL AND METHODS In this in vitro, experimental study, NHA in 1, 2, 5, 7 and 10wt% concentrations was added to Fuji II LC RMGI powder, and 48 samples (5×5mm) in five experimental and one control group (n=8) were fabricated. After polishing, cleaning and incubation at 37°C for three weeks, the samples were weighed and subjected to tooth brushing simulation in a toothpaste slurry according to ISO14569-1. Then, they were weighed again and the weight loss was calculated. The data were analyzed using one-way ANOVA and Tukey's test. RESULTS The highest and the lowest weight loss was found in the 0% NHA (-1.052±0.176) and 5% NHA (-0.370±0.143) groups, respectively. Wear was significantly higher in 0% NHA group (P<0.05). No difference was detected in wear between 2 and 5wt% NHA or among 1, 7 and 10wt% NHA groups. Significant differences were noted in wear between 2 and 5wt% NHA and 1, 7 and 10wt% NHA groups (P<0.001). CONCLUSIONS Incorporation of up to 10wt% of NHA increases the wear resistance of Fuji II LC RMGI. This increase was the highest when 2 and 5wt% NHA were added. Key words:Glass ionomer, hydroxyapatites, nanoparticles, dental restoration wear.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microhardness and Wear Resistance of Glass Ionomer Cements Modified by Chitosan and Nano-Hydroxyapatite

Despite the merits of glass ionomer cements (GICs), they suffer from weak mechanical properties such as low wear resistance. In this study, the mechanical properties of GICs after incorporating chitosan and nano-hydroxyapatite was investigated. The samples were prepared in four groups, including non-modified GIGs (NMGIC, n = 5), chitosan incorporated GICs (CHGIC, n = 5), nano-hydroxyapatite inc...

متن کامل

Effect of Incorporation of Nano-Hydroxyapatite and Nano-Zinc Oxide in Resin Modified Glass Ionomer Cement on Metal Bracket Debonding

Background and Aim: Use of fluoride releasing materials to decrease the risk of demine-ralization around orthodontic brackets would be reasonable as an adhesive for bracket bonding only if they provide acceptable shear bond strength (SBS). The aim of this study was to evaluate the SBS of resin-modified glass ionomer cements (RMGICs) modified by nano-zinc oxide (NZnO) and nano- hydroxyapatite (N...

متن کامل

Evaluation of the effect of adding micro-hydroxyapatite and nano-hydroxyapatite on the microleakage of conventional and resin-modified Glass-ionomer Cl V restorations

BACKGROUND Pulpal reaction to restorative materials depends on marginal microleakage, which is a dynamic phenomenon that allows bacteria and fluids to traverse across the tooth-restoration interface. Glass-ionomer cement (GIC) exhibits low microleakage due to direct bonding to tooth structures. Hydroxyapatite (HAP) based on the similarity with tooth structure may decrease the microleakage. The ...

متن کامل

بررسی مقایسه‌ای خارج دهانی استفاده از سه نوع گلاس آینومر به عنوان لاینر چسبنده در افزایش مقاومت شکست دندانهای ترمیم شده با آمالگام

Statement of Problem: Because dental amalgam does not adhere to tooth structure, using adhesive cements in amalgam-bonded restorations have been increased. Purpose: The goal of this in-vitro study was to compare the effects of three types of glass ionomer as adhesive liners as well as varnish liner in increasing fracture resistance of teeth restored with amalgam. Materials and Methods: Seventy ...

متن کامل

The Effect of Cigarette Smoking on Solubility and Disintegration of Resin Modified Glass Ionomer Cement – An In Vitro Study

Introduction: Glass ionomer cement (GIC) is a dental restorative material that is prone to solubility and degradation. GIC could degrade in presence of water and desiccation due to environmental factors during setting process and eventually might lead to the failure of the restoration. Cigarette smoking brings a complex chemical mixture to oral cavity that can inhibit polymeriz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017